

TSM101/A

VOLTAGE AND CURRENT CONTROLLER

- 1.24V SERIES VOLTAGE REFERENCE WITH 10MA OUTPUT CURRENT AND 1% PRECI-SION (TSM101A)
- TWO OPERATIONAL AMPLIFIERS WITH ORED OUTPUT AND 1MHZ GAIN BAND-WIDTH PRODUCT
- BUILT-IN CURRENT GENERATOR WITH EN-ABLE/DISABLE FUNCTION
- 4.5 TO 32V SUPPLY VOLTAGE RANGE
- SO8 OR DIP8 PACKAGES

DESCRIPTION

The TSM101/TSM101A integrated circuit incorporates a high stability series band gap voltage reference, two ORed operational amplifiers and a current source.

This IC compares the DC voltage and the current level at the output of a switching power supply to an internal reference. It provides a feedback through an optocoupler to the PWM controller IC in the primary side.

The controlled current generator can be used to modify the level of current limitation by offsetting the information coming from the current sensing resistor.

APPLICATIONS

This circuit is designed to be used in battery chargers with a constant voltage and a limited output current.

It can be used in every types of application requiring a precision voltage regulation and current limitation.

Other applications include voltage supervisors, over voltage protection...

ORDER CODES

Part Number	Temperature Bange	Pac	kage
T art Number	N N N		D
TSM101	-20, +70°C	•	•
TSM101A	-20, +70°C	•	•

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage - (note 1)	36	V
l _{out}	Output Current - (note 2)	20	mA
Pd	Power Dissipation	200	mW
Vin	Input Voltage - (note 3)	-0.3, V _{CC} -1.5	V
l _{in}	Input Current	±1	mA
Tstg	Storage Temperature	-40 to +125	°C

Notes : 1. All voltages values, except differential voltage are with respect to network ground terminal

2. The voltage reference is not protected against permanent short circuit

3. The magnitude of input and output voltages must never exceed -0.3V or V_{CC} -1.5V.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 32	V
T _{oper}	Operating Free Air Temperature Range	-20 to +70	°C

ELECTRICAL CHARACTERISTICS

 $T_{amb} = 25^{\circ}C$, $V_{CC} = 15V$ (unless otherwise specified)

OPERATIONAL AMPLIFIER : TSM101, TSM101A

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Icc	Total Supply Current	$V_{CC} = 15V$			2	mA
Vi	Input Voltage Range		0		V _{CC} -1.5V	V
Vio	Input Offset Voltage	25°C -20 <t<sub>amb.<70°C</t<sub>	-5 -7	1	5 7	mV
lib	Input Bias Current @ V _{in} = 1.2V on pin 7 and V _{in} = 0V on pin 5	25°C -20 <tamb.<70°c< td=""><td>-700 -1000</td><td>-300</td><td>0 0</td><td>nA</td></tamb.<70°c<>	-700 -1000	-300	0 0	nA
I _{sink}	Output Sink Current, $V_{ol} = 2.5V$	25°C -20 <t<sub>amb.<70°C</t<sub>	8	15		mA
A _{vo}	Large Signal Voltage Gain	$R_{L} = 2k\Omega$ -20< $T_{amb.}$ <70°C	15			V/mV
SVR	Supply Voltage Rejection Ratio	-20 <t<sub>amb.<70°C</t<sub>	65	90		dB
CMR	Common Mode Rejection Ratio	-20 <t<sub>amb.<70^oC</t<sub>		80		dB
GBP	Gain Bandwidth Product	$\begin{array}{l} V_{CC} = 15V, F = 100 kHz \\ V_{in} = 10mV, RL = 2k\Omega \\ C_L = 100 pF \end{array}$		1		MHz
l _{oh}	Output Leakage Current	25°C -20 <t<sub>amb.<70°C</t<sub>			2 7	μA

ELECTRICAL CHARACTERISTICS

 $T_{amb} = 25^{\circ}C$, $V_{CC} = 15V$ (unless otherwise specified)

VOLTAGE REFERENCE : TSM101

Symbol	Parameter Test Conditions Min.				Max.	Unit
V _{ref}	Reference Voltage	$I_{out} = 1 \text{mA}, T_{amb.} = 25^{\circ}\text{C}$	1.21	1.24	1.27	V
K _{vt}	Temperature Stability	-20 < T _{amb.} < 70°C		30	100	ppm/ºC
R _{eglo}	Load Regulation	1 < I _{out} < 10mA		5	15	mV
R _{egli}	Line Regulation	5 < V _{in} < 32V		3.5	10	mV

VOLTAGE REFERENCE : TSM101A

Symbol	ol Parameter Test Conditions Min.				Max.	Unit
V _{ref}	Reference Voltage	$I_{out} = 1 \text{ mA}, T_{amb.} = 25^{\circ} \text{C}$	1.227	1.24	1.252	V
K _{vt}	Temperature Stability	-20 < T _{amb.} < 70°C		30	100	ppm/ºC
R _{eglo}	Load Regulation	1 < I _{out} < 10mA		5	15	mV
R _{egli}	Line Regulation	5 < V _{in} < 32V		3.5	10	mV

CURRENT GENERATOR : TSM101, TSM101A

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
lo	Current Source			1.4		mA
K _{cgt}	Temperature Stability	-20 < T _{amb.} < 70 ^o C		500		ppm/°C
Cglir	Line Regulation	$4.5 < V_{CC} < 32V$		0.003	0.03	mA
V _{csen}	Voltage at the enable pin to have $I_0 = 1 \text{mA}$	-20 < T _{amb.} < 70 ^o C			0.6	V
Vcsdis	Voltage at the enable pin to have $I_0 = 0 \text{mA}$	-20 < T _{amb.} < 70 ^o C	2			V
I _{csen}	Input Current on the Csen pin	-20 < T _{amb.} < 70 ^o C			30	μΑ
I _{csleak}	Leakage Current	$V_{cs} = 2V$ -20 < T _{amb.} < 70°C		0.5	2	μΑ

DESCRIPTION

Name	Pin	Туре	Function			
V _{ref}	1	OUTPUT	Voltage Reference Output 1.24V, 10mA max. Do not short circuit			
V _{rin}	7	INPUT	Voltage Regulation Loop Input			
Crin	7	INPUT	Current Limitation Loop Input, connected to the sense resistor			
Crref	3	INPUT	Current Limitation Reference Input			
C _{sen}	2	INPUT	Current source enable input. This current source can be used to offset the voltage measurement on the sense resistor and therefore to modify the charge current. The current source is enabled when the input voltage on pin 2 is lower than 0.8V.			
OUTPUT	6	OUTPUT	Output pin common to the voltage regulation and current limitation loops. This output can drive the primary side (LED) of an optocoupler.			
Vcc	8	INPUT	Power Supply Input (4.5 to 32VDC)			
GND	4	INPUT	Ground			

TYPICAL APPLICATION : Battery Charger

In the following application schematic, the TSM101A is used to control the voltage and the current output of a flyback converter in order to charge a battery.

The current limitation is performed by sensing the voltage across the low ohmic value resistor R5 and comparing it to a fixed value set by the bridge composed by R2 and R3. When the voltage on R5 is higher than the voltage on R3 the output of the current loop operational amplifier decreases. The optocoupler current increases and tends to reduce the output voltage by the way of the PWM controller.

The voltage regulation is done by comparing a part of the output voltage (resistor bridge R6 and R7) to the voltage reference (1.24V).

If this part is higher than 1.24V, the output of the voltage loop operational amplifier decreases. The optocoupler current increases and tends to reduce the output voltage by the way of the PWM controller.

By enabling the TSM101A current source (pin 2) it is possible to offset the current sensing by a voltage equal to :

• $V_{off} # 1.4 \text{ R4} (V_{off} \text{ in Volt and R4 in } k\Omega)$

This offset lowers the output charge current and this function can be used to charge two types of batteries having different capacities. The current source is enabled by connecting pin 2 to ground.

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim	Millimeters			Inches		
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
A		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim		Millim eters			Inches	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1			45°	(typ.)		
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
М			0.6			0.024
S			8 ^o (r	max.)		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

